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Abstract. The propagator matrix is one ingredient in exact theories of multiple scattering.
It occurs in the addition theorem (or translation formula) for expanding a spherical outgoing
multipole, singular at one point, in terms of regular spherical solutions about another point.
It also occurs in the two-centre expansion of the free-space Green’s function (or free-particle
propagator). Many methods have been devised for computing the propagator matrix, but one of
the most efficient, numerically, is based on a formula obtained in 1990 by Rehr and Albers and
by Fritzsche. A clear derivation of this formula is given. The formula is also simplified, leading
to an expansion in inverse powersidf, wherek is the wavenumber anklis the spacing. This

leads to consistent approximations, which are asymptotidas oc.

1. Introduction

‘Multiple scattering’ means different things to different scientists, but a general definition
might be ‘the interaction of fields with two or more obstacles’. For example, a typical
multiple-scattering problem in classical physics is the scattering of sound waves by two
rigid spheres. Further examples, such as the scattering of spherical electron waves by a
cluster of atoms, can be found in condensed-matter physics [9, 20].
The problem of acoustic scattering by two spheres can be solved exactly by a method
that goes back to Lord Rayleigh. Suppose that the spheres are cenPedad O,. Write
the scattered field as a superposition of outgoing multipol¢g' (separated solutions of
the Helmholtz equation in spherical polar coordinates), one set singuiar and the other
set singular aDy:
W=y (ayyy(ry) + by (ra)).
(Precise definitions will be given later.) Then, determine the coefficiefitand 0" by
applying the boundary condition on each sphere in turn:Athis requires the expansion of
Y™ (rp) in terms of regular spherical solutions centred@q ' (r1). Thus, we need the
addition theorem
Y (ra) = Spb)Pl(ry)
Vi
which is valid forr, < b, wherer; = |r1|, b = |b] andr, = r; + b.
The matrixS = (S,) is called theseparation matrixor the translation matrixor the
propagator matrix It also appears in thevo-centre expansionf the fundamental solution
(or ‘free-particle propagator’). Thus, witR = a + b + ¢, we have [9, p 494]
kR ' -
4riy Ny (=1 SpOPr @) (1.1)

kR
nm v,
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whereR = |R| and the overbar denotes complex conjugation; this formula is certainly valid
if a+c <b.

Exact expressions f& have been known for over 40 years; see, for example [4, 1]. The
standard expression involves a sum of (in) terms, each of which contains a multipole
¥, (b) and a Gaunt coefficient. (Gaunt coefficients can be written as the product of two
Clebsch—Gordan coefficients or as the product to two Wigngsgmbols, apart from trivial
factors.)

However, in numerical applications, one often wants to comgjitefor many values of
n andv; the standard expression is inefficient for this purpose. Consequently, many authors
have developed various algorithms for computi$igSome of these provide efficient ways
of evaluating the standard expression, perhaps by recursive techniques; see, for example,
the papers by Chew [2], Kim [11] and Xu [19]. However, it is known that some recurrence
relations are numerically unstable in certain circumstances [13].

Some authors begin by obtaining new expressionsSfoor good approximations t§.
Two such approaches are worthy of note. First, there are methods badetjonalization
These were developed for usefast multipole methodsvhich provide efficient numerical
methods for solving the boundary integral equations of acoustic-scattering theory. See, for
example, papers by Coifmaet al [3], Rokhlin [17], Epton and Dembart [6] and Rahola
[15] for more information.

Second, there are methods basedseparation These use a formula of the form

ikb
S (b) = e >SSy (b) 1.2)

nv H
ikb Nt

where the dependence @m, m) and (v, ) is separated. Such a formula was obtained by
Rehr and Albers [16] and by Fritzsche [7], and is the focus of this paper.

It is known that many published approximations§acan be obtained by truncating the
series in (1.2); see [7, 16]. Numerically, one often retains only a few terms, but this can lead
to serious errors, especially b is not large [8]. Nevertheless, it has been demonstrated
by Stbilleau [18] that, when properly truncated, (1.2) gives a very efficient and accurate
algorithm for computingS. Moreover, he has also derived recursion relations for calculating
the terms in (1.2).

With this as background, we have re-examined (1.2) and its derivation. First, we show
in section 3 that one of the summations in (1.2) can be evaluated analytically. This leads
to an explicit formula forS in inverse powers okb: consistent asymptotic approximations
of S can then be obtained by truncating this expansion.

Second, in section 4, we give a clear derivation of (1.2). We do this mainly because the
existing derivations are defective or sketchy. Given the efficacy of (1.2), and its widespread
use in condensed-matter physics, it seems worthwhile to give such a derivation. Moreover,
we hope to bring the method to the attention of those working on related multiple-scattering
problems in other branches of physics.

2. The Rehr—Albers—Fritzsche formula

Let (r, 0, ¢) be spherical polar coordinates @. Suppose, for simplicity, thah = bz,
whereb is the position vector ofD; with respect toO, and z is a unit vector along the
z-axis (so thatO, is atr = b, 6 = 0). (The general situation, in whicb; is not on

the z-axis can be handled by introducing rotation matrices; this was done by Danos and
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Maximon [4].) It follows that

S”ﬁ)ﬂ(b%) = (_1)”SZlV(kb) Sm//_ (21)
whereg;; is the Kronecker delta; the coefficiens$, (b) are calledz-axis propagators The
introduction of the factoX—1)" on the right-hand side ensures that we have the symmetry
property,

S (kb) = Si (kb).
Moreover, the coefficients!: do not depend on the sign ef, so that, henceforth, we can

v
assume thain > 0.
Before giving an explicit formula fos!" (kb), let us fix our notation and normalizations.

nv

We define normalized spherical harmonics by
Y™M(#) = Y™(0, ¢) = (4r)"Y2A" P (cosh)e™?

forn=0,1,2,...andm =0, £1, £2, ..., +n, whereA!' is a normalization factor, defined
by
— |
A" =~ L [P 2.2)
(n +m)!

and P!" is an associated Legendre function, defined by
(1 — g2ym/2 gmn
2mpl dpmtr
Then, we define the outgoing spherical wavefunctions by
v (1) = hP (k)Y ()
wherehD is a spherical Hankel function, and the regular spherical wavefunctions by
Yo' (r) = Ju(kr)Y, (7)
where j, is a spherical Bessel function.

We can now state the formula published in 1990 by Rehr and Albers [16] and by
Fritzsche [7]. It is

P"(t) = (> — 1",

N eikb w2€+m . o
S (kb) = (=1)™I"TVAT AT — —d a ™" 2.3
(kD) = (=1)"" TV ATAS ikb;e!(um)! L w)dy ™ (w) (2.3)
for m > 0, where
i

Y= 2

and
[ 4
dnl(w) — Z M (2.4)

— (n—$)I(s — O

Let us make some preliminary comments on (2.3). First of all, it is exact. Second,
all summations are finite; to be precise, the summation in (2.3) is ftom 0 to
¢ = min(v,n — m) whereas the summation in (2.4) is from= ¢ to s = n. Thus, to
evaluate (2.3), a single sum must be calculated wherein each term consists of the product
of two sums. In fact, we will show (see (3.1) below) that part of this calculation can be
carried out analytically, leaving a double sum. Nevertheless, the most important property
of (2.3), numerically, is that the dependencemoandv is separated. Finally, (2.3) gives an
expression forS”, as an exponential multiplied by terms involving inverse power&of
this leads naturally to various approximationg#f > 1.
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3. Reduction to a double sum

Consider the summation in (2.3). Explicitly, we have

wttm gt gt+m w't W+ 5! (n+1)!

v¥n _

0@ +m)! Y. DU +m)t v—s)ls—=0O! (n—0{t — £ —m)!

where, in accordance with Pauli’s ‘law of sloppiness’ [14,p 126], we do not worry unduly
about the summation limits. Introducing a new summation variaktes + ¢, the right-hand
side becomes

e W+ (14— 9)! 1
]ZwIZ(v—s)! n—j+s)! ZE!(S—E)!(Z—}—m)!(j—s—m—ﬁ)!

4

wherein the¢-sum can be written in terms of binomial coefficients as

1 S j—s . 1 J
s1(j — ) ;(»(j—s—m—ﬁ)_s!(j—s)! (j—s—m)'
Hence,

wttm gt gt+m . v+ 5)! n+j —5)!
Z %% i
L1 4 m)! ;w j'XS: m+s!@—s)NG—s—m!G—s)n—j+s!

Thus, apart from the summation limits (which will be obtained later), we have the following
result.

Theorem 1.

) eikb n+v i J 51
S™ (kb) = (—1)"%"*“% > <%) > AW, ImD A (n, —|m]) (3.1
j=lm| s=50

for all kb > 0, whereso = max0, j — n), s3 = min(v, j — |m|) and

v+ s)!
(m+ s)lsl(v — s)!

Y e (v + m)! v+ s)!
B 2U+l\/ W —=—m)! (m+s)s!(v—s)" (3.2)

It is interesting to compare (3.1) with the Rehr—Albers—Fritzsche formula (2.3). Thus,
the dependence om and v is separated in both, but (2.3) involves thactions d‘(w)
whereas (3.1) involves theoefficients A, (n, m). Formula (3.1) can also be used to obtain
consistentapproximations for largéb. Thus, for the leading-order approximation= 0),
we must taken = 0 whencesy = 51 = 0 giving

As(w,m) = (=D"A"

ekb.
S™ (kb) ~ (SmO%I”*”\/Zn +1V2v 1 askb — 0o (3.3)

which is known as th@lane-wave approximatiofil2]. If we include terms of Qkb)2),
we obtain

S™ (kb) ~ 8,oSPVAL + wln(n 4+ 1) + v(v 4+ D]} — w8 ST An(n + 1)v/v(v + 1)
askb — oo, wheres,,0SPWA is the right-hand side of (3.3) and = i/(2kb).

nv
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4. The Rehr-Albers—Fritzsche formula: a proof

The published derivations of (2.3) are unsatisfactory for several reasons, as discussed below
in section 4.1. As (2.3) is so useful, both for numerical work and for generating asymptotic
approximations, it seems worthwhile to give a more transparent derivation. We begin with
an integral representation fo&/R.

Theorem 2.
eikR 52 )
whereR = |R| > 0 and# € Q, the unit sphere. The contodr goes fromé = —oo to

& = 400, passing above the simple polegéat= —k and below the simple pole gt= +k.

Proof. Direct calculation shows that the inner integral isjd(¢ R), whence the right-hand
side of (4.1) is

1 §

27T|R C %_2 —

S(@F e R de =T, —T_
say, where

&*iER i,

~ 27iR 52 k2
These integrals can be evaluated using Cauchy’s residue theorem. Thils, fdose the
contour using a large semicircle in the upper half of the comglgpane. There is no
contribution from this semicircle as it recedes to infinity, by Jordan’s lemma. The contour
encloses the simple pole at= +k (but not the pole at = —k). Hence, evaluating the
residue, we see that

I, = 3R /R.

Similarly, for Z_, close the contour in the lower half of the complexplane. Taking
account of the direction of traversal around the contour, and evaluating the residue of the
pole até = —k, we find thatZ_ = —7,, and the result follows. |

In the above proof, we split thé-integral into two,Z, andZ_, and then evaluated
each separately, one by closing the contour in the upper half-plane and one by closing the
contour in the lower half-plane. This is a standard technique. However, care is needed to
ensure thaZ, andZ_ exist separately: the splitting is not unique, and some splittings may
introduce additional singularities &t= 0. For example, a common mistake is to split using

2j,¢R) =hPER) + hP(ER); (4.2)

each of the spherical Hankel functions igc0"~!) as& — 0.
The representation (4.1) is a variant of well known formulae using volume integrals;
for example, DeSanto [5 p 64] shows that

R exp(ié - R)
R T2 /// 1€12 = (k +ig)2 o. (43)

However, (4.1) is preferable for at least two reasons: it does not involve adding a small
imaginary part to the wavenumber; and it uses an integration along the entirg-awi,
so that contour-integral methods are readily available.
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Note that, in (4.1) (and (4.3)), one cannot interchange the order of integration: the
resulting&-integral diverges.

We are going to combine theorem 2 with the two-centre expansiolofR (1.1), so
as to obtain an alternative expression &j/‘(b2). Thus, writeR = a + b + ¢, and then
use the standard expansion of a plane wave [9, p 373] twice, once in the form

exp(iér - a) = 4n Z i"jnEa)YM (@)Y, (1)

n,m

and once in the form

expiEr - ¢) =41 Y i'ju(E) YL @Y (P)
v,
where

o0 n
n,m n=—00 m=—n

Substituting in (4.1), the inner integral becomes
@m)2 Y N i Ea) ju (E Y (@) Y (@)L (4.4)

n,m v,

where
7= / exp(i& - Y (#) Y (F) dQ(#).
Q
Now, assume that = bz, whencer - b = bcosd and

T =278, / gEbeostym pyym (3 sing do
0

= %‘Smu /llésb’Gm(t; n,v)dt (4.5)

where

G (13 n, v) = AILAT P (1) P (1) (4.6)
and A" is defined by (2.2).G,, has the following properties:

G, (t; n,v) is a polynomial of degree + v 4.7

G_nu(t;n,v) = Gy(t;n,v) (4.8)

Gu(—=t;n,v) = (=D""G,,(t;n,v) (4.9

G,t;n,v)=0 for |m| > min(n, v).

The first of these implies that
Gi,{)(l‘;n,\})EO forj>n+v
whereGY’ = (d/ /dt/)G,,. Hence, repeated integration by parts gives

/1e‘XfG (t)dt—g e'—Xt<_—1)j G (1) 1
1 B ix \ix m

Jj=0 -1
where we have writteid;,,, (t) for G,,(¢; n, v). But, from (4.9),

G (~tn,v) = (D" G (15 n, v)
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whence

1 n+v
f eXG, (1) dt = ZG<J>(1)((X)])+1{e'X—( DrtvtientXy (4.10)

J:

We will evaluateG}!’ (1) later (lemma 4); it turns out thagy/’ (1) = 0 for j < |m|, so that
the lower limit in (4.10) can be replaced by= |m|.
Having evaluated, we next consider the outer integral; it is of the form

2 1
fcﬁjn(éa)jv(&)/le'ébﬁm(t:ﬂ, v)drdg =L (4.11)

say. From (4.10), we see that the inner integral i€ ® ") as¢ — 0. However,
jn(a)j,(Ec) = O(E™Y) asé — 0, whence the integrand in the outer integral is analytic at
& =0. So,

n+v
L= szmn(l)((b)ﬁl{m_( L)

where
L= f Lmjn(sa>jv(5c)§‘fb ds.
c E2—k?
Assuming thath > (a + ¢), we can close the contour fa. as forZ. in the proof of
theorem 2, giving
L, =ik j,(ka)j,(ke)e*®
and£_ = (=1"tv+/+12.  whence

L = 27ik€® j, (ka) j, (kc) i G- ok
n v m (Ikb)j.t,-]_

J=lm|

Combining this formula with (4.1), (4.4) and (4.5), we obtain
ékR n+v ( 1)]

kR — A7l Z |”+V¢m(a)w (c) Z G(J)(l) o

n,m,v Jj=Im|

for b > (a 4 ¢). Finally, comparison with the two-centre expansion (1.1) and the definition
(2.1) gives the following result.

Theorem 3.
eikb N n+v ) i J
S, (kb iy G (1 n, —
&b = 7! gﬂ;‘ w (b v)<kb)
for all kb > 0, whereG,,(¢; n, v) is defined by (4.6).
Note that although the argument above gives the resub fer(a + ¢), S7, (kb) itself does
not depend o andc, and so analytic continuation shows that the result must hold for all

b > 0.
The coefficienti;ﬁ,{)(l n, v) in theorem 3 are given by the next lemma.

Lemma 4.For 0< |m| < min(n, v) and|m| <n+v,
GPLn,v) = (- 1)'"’ ZAkw Im|)Aj i (n, —|m|) (4.12)
k=kg

wherekg = max0, j — n), ky = min(v, j — |m|) and A, (v, m) is defined by (3.2). For all
other values ofj, m, n andv, G’ (1; n, v) =
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Proof. From (4.8), it is enough to take > 0. From [10, equation 8.751(1)], we have
(n+m)! (1—r?)"/?
(n—m)!  2"m!
where F is a hypergeometric function. Hence,

Gn(t) = A" A" (2"m")2(1 - t5)"F,F,

P (t) = Fm—nm+n+1Lm+131-1)

where

F,=Fm—nm+n+Lm+131—1)
and we have used

[0 +m)!/(n — m) A = A,

(This expression foiG,, () can be used to show (4.7).) Now, put= %(1 — t) whence
1—1? =4z(1 - 7). Then, use [10, equation 9.131(1)]

L—)" P VFa.Biyid) =F(y —a.y — Biv: 2)
witha=m—v,8=m+v+1andy =m + 1 to give
A-—2)"F,=F(—v,v+1m+172).

Explicitly, we have

v

F(—v,v+1m+12z) = Zak(V,m)Zk

k=0
and
Fm—-nm+n+1Lm+1z2) = Zbk(n,m)zk
k=0
where
(=Dfkm! (v + k)!
ar(v, m) =
(m + )k (v — k)!
and
—1)km! l(n —m)!
by (. m) = =D'm!(n+m+k)!(n—m)

T mE K (n=m =+ m)
Hence, after rearranging the double summation, we find that

n+v—m
Gu(tin,v)=27" Y C2' (4.13)
s=0
where
. ,m) by_i(n,
C_nggmA;mZak(v m) by—k(n, m) forO<s<n+v—m.
= m! m!

In fact, asaqy, = 0 for k > v andb; = O for k > n — m, the summation is actually from
k =max0, s —n + m) to k = min(s, v). Simplifying further gives

Cy = (=" > A, m) Ay mi(n, —m)
k

where A, (v, m) is defined by (3.2).
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Finally, let us compare the expansion (4.13) with the Taylor seriesGip€r) about
t =1, which is

n+v o ~Hyj
Gu(t)=)_ ﬁ(},ﬁp(l)zf.
=

This shows thaG$’ (1) = 0 for j < m, and gives the desired formula (4.12). O

When theorem 3 is combined with lemma 4, theorem 1 is obtained, and this latter result
is equivalent to the formula of Rehr, Albers and Fritzsche.

4.1. Remarks

Here, we make some remarks concerning the papers [7, 16]. Both Fritzsche [7, equation (6)]
and Rehr and Albers [16, equation (7)] begin with a volume-integral representatisfi/for
The derivation of this formula by Fritzsche [7] is flawed because of the use of (4.2).

Fritzsche proceeds by obtaining a formula ¢ (kb) (his equation (10)), involving
the integralZ, defined by (4.5). He states that ‘can be calculated straightforwardly’
[7,p 1415] but does not give any details.

Rehr and Albers proceed differently. Apart from inessential factors, they arrive at an
integral similar to£, defined by (4.11). Next, they interchange the order of integration:
the resultingé-integral is divergent. Despite this, it is claimed that ‘the integral cver
can be done by contour integration (closing in the upper half-plane fer0 and in the
lower half-plane forr < 0)' [16,p 8147]. But, withr > 0 for example, this argument
would only give the claimed result iz > (a + ¢), whereas the remainingintegral is over
—1 <t < 1. Finally, Rehr and Albers use a very interesting formula for (a variant of)
the Laplace transform of the product of two functions [16, appendix B]. Their derivation of
this formula is also incomplete, although their final formula can be shown to be correct.
However, we have shown above that this formula is not needed in order to obtain theorem 1.

5. Conclusions

The Rehr—Albers—Fritzsche formula can be used as the basis for a very efficient and accurate
algorithm for computing the propagator mati$x Here, we have clarified the derivation of

this formula, and shown how it can be simplified further. This simplification leads directly

to asymptotic approximations for largé. We hope that these will find application in other
areas of science and engineering, where multiple-scattering computations are widespread.
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