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Abstract. The propagator matrix is one ingredient in exact theories of multiple scattering.
It occurs in the addition theorem (or translation formula) for expanding a spherical outgoing
multipole, singular at one point, in terms of regular spherical solutions about another point.
It also occurs in the two-centre expansion of the free-space Green’s function (or free-particle
propagator). Many methods have been devised for computing the propagator matrix, but one of
the most efficient, numerically, is based on a formula obtained in 1990 by Rehr and Albers and
by Fritzsche. A clear derivation of this formula is given. The formula is also simplified, leading
to an expansion in inverse powers ofkb, wherek is the wavenumber andb is the spacing. This
leads to consistent approximations, which are asymptotic askb→∞.

1. Introduction

‘Multiple scattering’ means different things to different scientists, but a general definition
might be ‘the interaction of fields with two or more obstacles’. For example, a typical
multiple-scattering problem in classical physics is the scattering of sound waves by two
rigid spheres. Further examples, such as the scattering of spherical electron waves by a
cluster of atoms, can be found in condensed-matter physics [9, 20].

The problem of acoustic scattering by two spheres can be solved exactly by a method
that goes back to Lord Rayleigh. Suppose that the spheres are centred atO1 andO2. Write
the scattered fieldu as a superposition of outgoing multipolesψm

n (separated solutions of
the Helmholtz equation in spherical polar coordinates), one set singular atO1 and the other
set singular atO2:

u =
∑
n,m

(amn ψ
m
n (r1)+ bmn ψm

n (r2)).

(Precise definitions will be given later.) Then, determine the coefficientsamn and bmn by
applying the boundary condition on each sphere in turn: this requires the expansion of
ψm
n (r2) in terms of regular spherical solutions centred onO1, ψ̂m

n (r1). Thus, we need the
addition theorem

ψm
n (r2) =

∑
ν,µ

Smµnν (b)ψ̂
µ
ν (r1)

which is valid forr1 < b, wherer1 = |r1|, b = |b| andr2 = r1+ b.
The matrixS = (Smµnν ) is called theseparation matrixor the translation matrixor the

propagator matrix. It also appears in thetwo-centre expansionof the fundamental solution
(or ‘free-particle propagator’). Thus, withR = a+ b+ c, we have [9, p 494]

eikR

kR
= 4π i

∑
n,m

∑
ν,µ

(−1)nSmµnν (b)ψ̂m
n (a)ψ̂

µ
ν (c) (1.1)
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whereR = |R| and the overbar denotes complex conjugation; this formula is certainly valid
if a + c < b.

Exact expressions forS have been known for over 40 years; see, for example [4, 1]. The
standard expression involves a sum of min(n, ν) terms, each of which contains a multipole
ψs
q(b) and a Gaunt coefficient. (Gaunt coefficients can be written as the product of two

Clebsch–Gordan coefficients or as the product to two Wigner 3-j symbols, apart from trivial
factors.)

However, in numerical applications, one often wants to computeS
mµ
nν for many values of

n andν; the standard expression is inefficient for this purpose. Consequently, many authors
have developed various algorithms for computingS. Some of these provide efficient ways
of evaluating the standard expression, perhaps by recursive techniques; see, for example,
the papers by Chew [2], Kim [11] and Xu [19]. However, it is known that some recurrence
relations are numerically unstable in certain circumstances [13].

Some authors begin by obtaining new expressions forS, or good approximations toS.
Two such approaches are worthy of note. First, there are methods based ondiagonalization.
These were developed for use infast multipole methods, which provide efficient numerical
methods for solving the boundary integral equations of acoustic-scattering theory. See, for
example, papers by Coifmanet al [3], Rokhlin [17], Epton and Dembart [6] and Rahola
[15] for more information.

Second, there are methods based onseparation. These use a formula of the form

Smµnν (b) =
eikb

ikb

∑
N,M

SmMnN (b)S̃
µM

νN (b) (1.2)

where the dependence on(n,m) and (ν, µ) is separated. Such a formula was obtained by
Rehr and Albers [16] and by Fritzsche [7], and is the focus of this paper.

It is known that many published approximations toS can be obtained by truncating the
series in (1.2); see [7, 16]. Numerically, one often retains only a few terms, but this can lead
to serious errors, especially ifkb is not large [8]. Nevertheless, it has been demonstrated
by Śebilleau [18] that, when properly truncated, (1.2) gives a very efficient and accurate
algorithm for computingS. Moreover, he has also derived recursion relations for calculating
the terms in (1.2).

With this as background, we have re-examined (1.2) and its derivation. First, we show
in section 3 that one of the summations in (1.2) can be evaluated analytically. This leads
to an explicit formula forS in inverse powers ofkb: consistent asymptotic approximations
of S can then be obtained by truncating this expansion.

Second, in section 4, we give a clear derivation of (1.2). We do this mainly because the
existing derivations are defective or sketchy. Given the efficacy of (1.2), and its widespread
use in condensed-matter physics, it seems worthwhile to give such a derivation. Moreover,
we hope to bring the method to the attention of those working on related multiple-scattering
problems in other branches of physics.

2. The Rehr–Albers–Fritzsche formula

Let (r, θ, φ) be spherical polar coordinates atO2. Suppose, for simplicity, thatb = bẑ,
whereb is the position vector ofO1 with respect toO2 and ẑ is a unit vector along the
z-axis (so thatO1 is at r = b, θ = 0). (The general situation, in whichO1 is not on
the z-axis can be handled by introducing rotation matrices; this was done by Danos and
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Maximon [4].) It follows that

Smµnν (bẑ) = (−1)nSmnν(kb) δmµ (2.1)

whereδij is the Kronecker delta; the coefficientsSmnν(b) are calledz-axis propagators. The
introduction of the factor(−1)n on the right-hand side ensures that we have the symmetry
property,

Smnν(kb) = Smνn(kb).
Moreover, the coefficientsSmnν do not depend on the sign ofm, so that, henceforth, we can
assume thatm > 0.

Before giving an explicit formula forSmnν(kb), let us fix our notation and normalizations.
We define normalized spherical harmonics by

Ymn (r̂) = Ymn (θ, φ) = (4π)−1/2Amn P
m
n (cosθ)eimφ

for n = 0, 1, 2, . . . andm = 0,±1,±2, . . . ,±n, whereAmn is a normalization factor, defined
by

Amn = (−1)m
√

2n+ 1

√
(n−m)!
(n+m)! (2.2)

andPmn is an associated Legendre function, defined by

Pmn (t) =
(1− t2)m/2

2nn!

dm+n

dtm+n
(t2− 1)n.

Then, we define the outgoing spherical wavefunctions by

ψm
n (r) = h(1)n (kr)Ymn (r̂)

whereh(1)n is a spherical Hankel function, and the regular spherical wavefunctions by

ψ̂m
n (r) = jn(kr)Ymn (r̂)

wherejn is a spherical Bessel function.
We can now state the formula published in 1990 by Rehr and Albers [16] and by

Fritzsche [7]. It is

Smnν(kb) = (−1)min+νAmn A
−m
ν

eikb

ikb

∑
`

w2`+m

`!(`+m)! d
`
ν (w)d

`+m
n (w) (2.3)

for m > 0, where

w = i

2kb
and

d`n(w) =
∑
s

(n+ s)!ws−`
(n− s)!(s − `)! . (2.4)

Let us make some preliminary comments on (2.3). First of all, it is exact. Second,
all summations are finite; to be precise, the summation in (2.3) is from` = 0 to
` = min(ν, n − m) whereas the summation in (2.4) is froms = ` to s = n. Thus, to
evaluate (2.3), a single sum must be calculated wherein each term consists of the product
of two sums. In fact, we will show (see (3.1) below) that part of this calculation can be
carried out analytically, leaving a double sum. Nevertheless, the most important property
of (2.3), numerically, is that the dependence onn andν is separated. Finally, (2.3) gives an
expression forSmnν as an exponential multiplied by terms involving inverse powers ofkb;
this leads naturally to various approximations ifkb � 1.
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3. Reduction to a double sum

Consider the summation in (2.3). Explicitly, we have∑
`

w2`+md`νd
`+m
n

`!(`+m)! =
∑
`,s,t

ws+t

`!(`+m)!
(ν + s)!

(ν − s)!(s − `)!
(n+ t)!

(n− t)!(t − `−m)!
where, in accordance with Pauli’s ‘law of sloppiness’ [14, p 126], we do not worry unduly
about the summation limits. Introducing a new summation variablej = s+t , the right-hand
side becomes∑

j

wj
∑
s

(ν + s)!
(ν − s)!

(n+ j − s)!
(n− j + s)!

∑
`

1

`!(s − `)!(`+m)!(j − s −m− `)!
wherein thè -sum can be written in terms of binomial coefficients as

1

s!(j − s)!
∑
`

(
s

`

)(
j − s

j − s −m− `
)
= 1

s!(j − s)!
(

j

j − s −m
)
.

Hence,∑
`

w2`+md`νd
`+m
n

`!(`+m)! =
∑
j

wj j !
∑
s

(ν + s)!
(m+ s)!s!(ν − s)!

(n+ j − s)!
(j − s −m)!(j − s)!(n− j + s)! .

Thus, apart from the summation limits (which will be obtained later), we have the following
result.

Theorem 1.

Smnν(kb) = (−1)min+ν
eikb

ikb

n+ν∑
j=|m|

j !

(
i

2kb

)j s1∑
s=s0
As(ν, |m|)Aj−s(n,−|m|) (3.1)

for all kb > 0, wheres0 = max(0, j − n), s1 = min(ν, j − |m|) and

As(ν,m) = (−1)mA−mν
(ν + s)!

(m+ s)!s!(ν − s)!

= √2ν + 1

√
(ν +m)!
(ν −m)!

(ν + s)!
(m+ s)!s!(ν − s)! . (3.2)

It is interesting to compare (3.1) with the Rehr–Albers–Fritzsche formula (2.3). Thus,
the dependence onn and ν is separated in both, but (2.3) involves thefunctions d`n(w)
whereas (3.1) involves thecoefficientsAs(n,m). Formula (3.1) can also be used to obtain
consistentapproximations for largekb. Thus, for the leading-order approximation (j = 0),
we must takem = 0 whences0 = s1 = 0 giving

Smnν(kb) ∼ δm0
eikb

ikb
in+ν
√

2n+ 1
√

2ν + 1 askb→∞ (3.3)

which is known as theplane-wave approximation[12]. If we include terms of O((kb)−2),
we obtain

Smnν(kb) ∼ δm0S
PWA
nν {1+ w[n(n+ 1)+ ν(ν + 1)]} − wδ|m|1SPWA

nν

√
n(n+ 1)

√
ν(ν + 1)

askb→∞, whereδm0S
PWA
nν is the right-hand side of (3.3) andw = i/(2kb).
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4. The Rehr–Albers–Fritzsche formula: a proof

The published derivations of (2.3) are unsatisfactory for several reasons, as discussed below
in section 4.1. As (2.3) is so useful, both for numerical work and for generating asymptotic
approximations, it seems worthwhile to give a more transparent derivation. We begin with
an integral representation for eikR/R.

Theorem 2.

eikR

R
= 1

4π2

∫
C

ξ2

ξ2− k2

∫
�

exp(iξ r̂ ·R) d�(r̂) dξ (4.1)

whereR = |R| > 0 and r̂ ∈ �, the unit sphere. The contourC goes fromξ = −∞ to
ξ = +∞, passing above the simple pole atξ = −k and below the simple pole atξ = +k.

Proof. Direct calculation shows that the inner integral is 4πj0(ξR), whence the right-hand
side of (4.1) is

1

2π iR

∫
C

ξ

ξ2− k2
(eiξR − e−iξR) dξ = I+ − I−

say, where

I± = 1

2π iR

∫
C

ξ

ξ2− k2
e±iξR dξ.

These integrals can be evaluated using Cauchy’s residue theorem. Thus, forI+, close the
contour using a large semicircle in the upper half of the complexξ -plane. There is no
contribution from this semicircle as it recedes to infinity, by Jordan’s lemma. The contour
encloses the simple pole atξ = +k (but not the pole atξ = −k). Hence, evaluating the
residue, we see that

I+ = 1
2eikR/R.

Similarly, for I−, close the contour in the lower half of the complexξ -plane. Taking
account of the direction of traversal around the contour, and evaluating the residue of the
pole atξ = −k, we find thatI− = −I+, and the result follows. �

In the above proof, we split theξ -integral into two,I+ and I−, and then evaluated
each separately, one by closing the contour in the upper half-plane and one by closing the
contour in the lower half-plane. This is a standard technique. However, care is needed to
ensure thatI+ andI− exist separately: the splitting is not unique, and some splittings may
introduce additional singularities atξ = 0. For example, a common mistake is to split using

2jn(ξR) = h(1)n (ξR)+ h(2)n (ξR); (4.2)

each of the spherical Hankel functions is O(ξ−n−1) asξ → 0.
The representation (4.1) is a variant of well known formulae using volume integrals;

for example, DeSanto [5, p 64] shows that

eikR

R
= 1

2π2
lim
ε→0+

∫ ∫ ∫
exp(iξ ·R)
|ξ|2− (k + iε)2

dξ. (4.3)

However, (4.1) is preferable for at least two reasons: it does not involve adding a small
imaginary part to the wavenumber; and it uses an integration along the entire realξ -axis,
so that contour-integral methods are readily available.
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Note that, in (4.1) (and (4.3)), one cannot interchange the order of integration: the
resultingξ -integral diverges.

We are going to combine theorem 2 with the two-centre expansion of eikR/R, (1.1), so
as to obtain an alternative expression forSmµnν (bẑ). Thus, writeR = a + b + c, and then
use the standard expansion of a plane wave [9, p 373] twice, once in the form

exp(iξ r̂ · a) = 4π
∑
n,m

injn(ξa)Ymn (â)Y
m
n (r̂)

and once in the form

exp(iξ r̂ · c) = 4π
∑
ν,µ

iνjν(ξc)Y
µ
ν (ĉ)Y

µ
ν (r̂)

where ∑
n,m

≡
∞∑

n=−∞

n∑
m=−n

.

Substituting in (4.1), the inner integral becomes

(4π)2
∑
n,m

∑
ν,µ

in+νjn(ξa)jν(ξc)Ymn (â)Y
µ
ν (ĉ)I (4.4)

where

I =
∫
�

exp(iξ r̂ · b)Ymn (r̂)Y
µ
ν (r̂) d�(r̂).

Now, assume thatb = bẑ, whencer̂ · b = b cosθ and

I = 2πδmµ

∫ π

0
eiξb cosθYmn (r̂)Y

m
ν (r̂) sinθ dθ

= 1
2δmµ

∫ 1

−1
eiξbtGm(t; n, ν)dt (4.5)

where

Gm(t; n, ν) = Amn Amν Pmn (t)Pmν (t) (4.6)

andAmn is defined by (2.2).Gm has the following properties:

Gm(t; n, ν) is a polynomial of degreen+ ν (4.7)

G−m(t; n, ν) = Gm(t; n, ν) (4.8)

Gm(−t; n, ν) = (−1)n+νGm(t; n, ν) (4.9)

Gm(t; n, ν) ≡ 0 for |m| > min(n, ν).

The first of these implies that

G(j)
m (t; n, ν) ≡ 0 for j > n+ ν

whereG(j)
m = (dj /dt j )Gm. Hence, repeated integration by parts gives∫ 1

−1
eiXtGm(t) dt =

n+ν∑
j=0

[
eiXt

iX

(−1

iX

)j
G(j)
m (t)

]1

−1

where we have writtenGm(t) for Gm(t; n, ν). But, from (4.9),

G(j)
m (−t; n, ν) = (−1)n+ν+jG(j)

m (t; n, ν)
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whence ∫ 1

−1
eiXtGm(t) dt =

n+ν∑
j=0

G(j)
m (1)

(−1)j

(iX)j+1
{eiX − (−1)n+ν+je−iX}. (4.10)

We will evaluateG(j)
m (1) later (lemma 4); it turns out thatG(j)

m (1) = 0 for j < |m|, so that
the lower limit in (4.10) can be replaced byj = |m|.

Having evaluatedI, we next consider the outer integral; it is of the form∫
C

ξ2

ξ2− k2
jn(ξa)jν(ξc)

∫ 1

−1
eiξbtGm(t; n, ν)dt dξ = L (4.11)

say. From (4.10), we see that the inner integral is O(ξ−n−ν) as ξ → 0. However,
jn(ξa)jν(ξc) = O(ξn+ν) asξ → 0, whence the integrand in the outer integral is analytic at
ξ = 0. So,

L =
n+ν∑
j=|m|

G(j)
m (1)

(−1)j

(ib)j+1
{L+ − (−1)n+ν+jL−}

where

L± =
∫
C

ξ−j+1

ξ2− k2
jn(ξa)jν(ξc)e

±iξb dξ.

Assuming thatb > (a + c), we can close the contour forL± as for I± in the proof of
theorem 2, giving

L+ = π ik−j jn(ka)jν(kc)eikb

andL− = (−1)n+ν+j+1L+, whence

L = 2π ikeikbjn(ka)jν(kc)

n+ν∑
j=|m|

G(j)
m (1)

(−1)j

(ikb)j+1
.

Combining this formula with (4.1), (4.4) and (4.5), we obtain

eikR

kR
= 4π ieikb

∑
n,m,ν

in+νψ̂m
n (a)ψ̂

m
ν (c)

n+ν∑
j=|m|

G(j)
m (1)

(−1)j

(ikb)j+1

for b > (a+ c). Finally, comparison with the two-centre expansion (1.1) and the definition
(2.1) gives the following result.

Theorem 3.

Smnν(kb) =
eikb

ikb
in+ν

n+ν∑
j=|m|

G(j)
m (1; n, ν)

(
i

kb

)j
for all kb > 0, whereGm(t; n, ν) is defined by (4.6).

Note that although the argument above gives the result forb > (a + c), Smnν(kb) itself does
not depend ona andc, and so analytic continuation shows that the result must hold for all
b > 0.

The coefficientsG(j)
m (1; n, ν) in theorem 3 are given by the next lemma.

Lemma 4.For 06 |m| 6 min(n, ν) and |m| 6 j 6 n+ ν,

G(j)
m (1; n, ν) = (−1)m

j !

2j

k1∑
k=k0

Ak(ν, |m|)Aj−k(n,−|m|) (4.12)

wherek0 = max(0, j − n), k1 = min(ν, j − |m|) andAk(ν,m) is defined by (3.2). For all
other values ofj , m, n andν, G(j)

m (1; n, ν) = 0.
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Proof. From (4.8), it is enough to takem > 0. From [10, equation 8.751(1)], we have

Pmn (t) =
(n+m)!
(n−m)!

(1− t2)m/2
2mm!

F(m− n,m+ n+ 1;m+ 1; 1
2(1− t))

whereF is a hypergeometric function. Hence,

Gm(t) = A−mn A−mν (2mm!)−2(1− t2)mFnFν
where

Fn ≡ F(m− n,m+ n+ 1;m+ 1; 1
2(1− t))

and we have used

[(n+m)!/(n−m)!]Amn = A−mn .

(This expression forGm(t) can be used to show (4.7).) Now, putz = 1
2(1− t) whence

1− t2 = 4z(1− z). Then, use [10, equation 9.131(1)]

(1− z)α+β−γ F (α, β; γ ; z) = F(γ − α, γ − β; γ ; z)
with α = m− ν, β = m+ ν + 1 andγ = m+ 1 to give

(1− z)mFν = F(−ν, ν + 1;m+ 1; z).
Explicitly, we have

F(−ν, ν + 1;m+ 1; z) =
ν∑
k=0

ak(ν,m)z
k

and

F(m− n,m+ n+ 1;m+ 1; z) =
n−m∑
k=0

bk(n,m)z
k

where

ak(ν,m) = (−1)km!(ν + k)!
(m+ k)!k!(ν − k)!

and

bk(n,m) = (−1)km!(n+m+ k)!(n−m)!
(m+ k)!k!(n−m− k)!(n+m)! .

Hence, after rearranging the double summation, we find that

Gm(t; n, ν) = zm
n+ν−m∑
s=0

Csz
s (4.13)

where

Cs = A−mn A−mν
s∑
k=0

ak(ν,m)

m!

bs−k(n,m)
m!

for 06 s 6 n+ ν −m.

In fact, asak = 0 for k > ν and bk = 0 for k > n − m, the summation is actually from
k = max(0, s − n+m) to k = min(s, ν). Simplifying further gives

Cs = (−1)s
∑
k

Ak(ν,m)As+m−k(n,−m)

whereAk(ν,m) is defined by (3.2).
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Finally, let us compare the expansion (4.13) with the Taylor series forGm(t) about
t = 1, which is

Gm(t) =
n+ν∑
j=0

(−2)j

j !
G(j)
m (1)z

j .

This shows thatG(j)
m (1) = 0 for j < m, and gives the desired formula (4.12). �

When theorem 3 is combined with lemma 4, theorem 1 is obtained, and this latter result
is equivalent to the formula of Rehr, Albers and Fritzsche.

4.1. Remarks

Here, we make some remarks concerning the papers [7, 16]. Both Fritzsche [7, equation (6)]
and Rehr and Albers [16, equation (7)] begin with a volume-integral representation forS

mµ
nν .

The derivation of this formula by Fritzsche [7] is flawed because of the use of (4.2).
Fritzsche proceeds by obtaining a formula forSmnν(kb) (his equation (10)), involving

the integralI, defined by (4.5). He states thatI ‘can be calculated straightforwardly’
[7, p 1415] but does not give any details.

Rehr and Albers proceed differently. Apart from inessential factors, they arrive at an
integral similar toL, defined by (4.11). Next, they interchange the order of integration:
the resultingξ -integral is divergent. Despite this, it is claimed that ‘the integral overξ

can be done by contour integration (closing in the upper half-plane fort > 0 and in the
lower half-plane fort < 0)’ [16, p 8147]. But, witht > 0 for example, this argument
would only give the claimed result ifbt > (a+ c), whereas the remainingt-integral is over
−1 6 t 6 1. Finally, Rehr and Albers use a very interesting formula for (a variant of)
the Laplace transform of the product of two functions [16, appendix B]. Their derivation of
this formula is also incomplete, although their final formula can be shown to be correct.
However, we have shown above that this formula is not needed in order to obtain theorem 1.

5. Conclusions

The Rehr–Albers–Fritzsche formula can be used as the basis for a very efficient and accurate
algorithm for computing the propagator matrixS. Here, we have clarified the derivation of
this formula, and shown how it can be simplified further. This simplification leads directly
to asymptotic approximations for largekb. We hope that these will find application in other
areas of science and engineering, where multiple-scattering computations are widespread.
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